Maximum Marks:100 Marks

VINAYAKA MISSIONS RESEARCH FOUNDATION (Deemed to be University) M.E -DEGREE EXAMINATIONS - FEB-2022 MANUFACTURING ENGINEERING Second Semester

MEMS & NANOTECHNOLOGY

(Candidates admitted under 2017 Regulations-CBCS)

Time : Three Hours

Answer ALL questions

Part-A (10 x 2 = 20 Marks)

- 1 Define MEMS.
- 2 What is micro fluidics?
- 3 Define Galiumarsenide.
- 4 Define Epitaxy.
- 5 List out the applications of smart materials.
- 6 List the application of Actuators.
- 7 Mention the concept used in top down processes and bottom up processes.
- 8 Define Gas Condensation process.
- 9 List out the mechanical properties of Nano materials.
- 10 Define scanning electron microscopy.

PART-B $(5 \times 16 = 80)$

11 a. Describe the working principle and application of microsystems.

OR

- b. Describe the design and fabrication process of MEMS.
- 12 a. Examine detail about bulk and surface machining.

OR

- b. Why silicon is widely used in MEMS and explain the mechanical properties of silicon?
- 13 a. Describe various pressure sensors and flow sensors.

OR

- b. List the types of smart materials with examples.
- 14 a. Briefly narrate the history of Nano-materials.

OR

- b. Explain mechanical milling process for synthesis of Nanoparticles.
- 15 a. Describe the Nano processing and Nano measuring systems.

OR

b.

Explain the working principle of scanning electron microscopy and its applications.

VINAYAKA MISSIONS RESEARCH FOUNDATION (Deemed to be University) M.E -DEGREE EXAMINATIONS - FEB-2022 MANUFACTURING ENGINEERING Third/Fifth Semester ELECTIVE - FLUID POWER AUTOMATION

(Candidates admitted under 2017 Regulations-CBCS)

Time : Three Hours

Maximum Marks:100 Marks

Answer ALL questions Part-A (10 x 2 = 20 Marks)

- 1 What is bulk modulus?
- 2 Draw the hydraulic symbol for the following. (i)Unloading valve. (i) Counter balancing valve
- 3 What is a positive displacement pump?
- 4 Which type of sealing materials used for high temperature operation?
- 5 Why direction control valves needed in a hydraulic system?
- 6 Explain Tandem centre valve
- 7 What are the factors that should be considered while selecting a fluid power circuit?
- 8 Define slip counter.
- 9 What is programmable logic control (PLC)
- 10 State one situation where you use an electrical timer.

PART-B $(5 \times 16 = 80)$

11 a. Comment on the difference between using pneumatic fluid power and hydraulic systems.

OR

- b. Discuss about the maintenance of the hydraulic oils.
- 12 a. Explain the working of piston pumps and discharge rates (swash plate type).

OR

- b. (a).Explain the working of double acting cylinder. (b).Explain about the telescoping cylinder with neat sketch.
- 13 a. How does a pressure relief valve differ from pressure reducing valve? How does a pressure reducing valve work? Explain with sketch.

OR

- b. Explain the following centre conditions of spool valves (a) Open centre valve. (b) Tandem centre valve (c) Closed centre valve. (d) Float centered valve
- 14 a. Explain with neat sketch of the step counter and its principle?

- b. What is a functional diagram? How does it different from a circuit diagram? What are the advantages of such a diagram while trouble-shooting?
- 15 a. Explain with neat sketch the electrical control of a regenerative cycle?

OR

b. What wall – attachment theory is as applied in fluidics? Also illustrate the wall – attachment phenomenon?

Sl.No. 3037

Maximum Marks:100 Marks

VINAYAKA MISSIONS RESEARCH FOUNDATION (Deemed to be University)

M.E -DEGREE EXAMINATIONS - FEB-2022

MANUFACTURING ENGINEERING

Second Semester

MANUFACTURING METROLOGY AND QUALITY CONTROL

(Candidates admitted under 2017 Regulations-CBCS)

Time : Three Hours

Answer ALL questions

Part-A (10 x 2 = 20 Marks)

- 1 Define engineering metrology.
- 2 State the applications of laser interferometry.
- 3 Define high inertia laser.
- 4 What is high inertia laser scan technique?
- 5 Define displacement devices.
- 6 What is probe sensor?
- 7 Define digital image processing?
- 8 Write the comparison of laser scanning and vision system.
- 9 Need for quality management.
- 10 Write the need for quality management system

PART-B $(5 \times 16 = 80)$

11 a. Explain briefly types of interferometry and its applications.

OR

- b. Explain briefly laser doopler anemometry, with suitable diagram.
- 12 a. Explain briefly high inertia laser techniques with suitable example.

OR

- b. Describe the classification of optical scanning system
- 13 a. Define co-ordinate metrology and its applications.

OR

- b. Describe about the co-ordinate metrology.
- 14 a. Explain briefly about image analysis techniques.

OR

- b. Explain briefly comparison Laser scanning with vision system.
- 15 a. Explain briefly poya yoke? and its applications.

OR

b. Define briefly quality engineering technique.

VINAYAKA MISSIONS RESEARCH FOUNDATION

(Deemed to be University)

M.E -DEGREE EXAMINATIONS - FEB-2022

MANUFACTURING ENGINEERING

Third/Fifth Semester

ELECTIVE - QUALITY AND RELIABILITY ENGINEERING

(Candidates admitted under 2017 Regulations-CBCS)

Time : Three Hours

Maximum Marks:100 Marks

Answer ALL questions Part-A (10 x 2 =20 Marks)

- 1 What is an R Chart?
- 2 Distinguish between a 'defect' and a 'defective'.
- 3 What do you understand by producer's risk and consumer's risk?
- 4 What is an OC Curve and what information does it convey?
- 5 What do you mean by factorial experiments?
- 6 What are two factorial experiments?
- 7 What is wear out failures?
- 8 What is system reliability?
- 9 Define maintainability?
- 10 What is preventive maintenance?

PART-B $(5 \times 16 = 80)$

11 a. What are the areas of applications of quality control?

OR

b. Following inspection data refers to 10 samples of 100 items each, concerning the production of bottle corks. Construct a P chart and comment.

Sample number	1	2	3	4	5	6	7	8	9	10
Number of defectives k	5	3	3	6	5	6	8	10	10	4

12 a. Explain in detail OC Curve in single sampling fraction defective plan.

OR

- b. Explain in detail on consumer's risk and producer's risk in sampling plans.
- 13 a. Explain Taguchi's quality loss function

OR

- b. What are the steps in quality process suggested by Taguchi?
- 14 a. Explain the measures of reliability?

OR

- b. Explain briefly parallel system reliability?
- 15 a. Write short notes on reliability life testing?

OR

b. Briefly explain the following (1) corrective maintenance (2) Predictive maintenance (3) Preventive maintenance.

Sl.No. 3026

Maximum Marks: 100 Marks

VINAYAKA MISSIONS RESEARCH FOUNDATION (Deemed to be University) M.E -DEGREE EXAMINATIONS - FEB-2022 MANUFACTURING ENGINEERING Third/Fifth Semester ELECTIVE - ADVANCES IN CASTING AND WELDING PROCESSES

(Candidates admitted under 2017 Regulations-CBCS)

Time : Three Hours

Answer **ALL** questions

Part-A (10 x 2 = 20 Marks)

- 1 Where skeleton patterns are employed?
- 2 Define choke area in castings?
- 3 Mention some important alloys of copper and their applications.
- 4 How impurities or slag are removed in direct arc furnace?
- 5 Differentiate between shell moulding and precision investment casting.
- 6 List the application of counter gravity low pressure casting.
- 7 What is meant by weld solidification rate?
- 8 What are the types of destructive testing of welds?
- 9 Name two functions of the filter glasses used in metal arc welding.
- 10 What is an inert gas?

PART-B $(5 \times 16 = 80)$

11 a. Explain the procedure for calculation of dimensions of a gating system. Illustrate with an example.

OR

- b. Explain the terms a). Directional solidification b). Use of internal and external chills. c). Bind risers. d). Use of exothermic and insulating materials for riser.
- 12 a. How does mold design affect the quality of castings. Explain with illustrations.

OR

- b. What are the factors that affect the quality demands of S.G iron? Explain.
- 13 a. Explain briefly the process of continuous casting. In what way is it superior then rolling process?

OR

- b. What are the main reasons of pollution in fettling shop? Explain how can there be controlled?
- 14 a. Explain methods to reduce welding stresses.

OR

- b. Briefly explain welding characteristics of magnesium.
- 15 a. Briefly explain ultrasonic welding process.

OR

b. Describe with suitable sketch the explosive welding process and its limitations as well as applications.

VINAYAKA MISSIONS RESEARCH FOUNDATION (Deemed to be University) M.E -DEGREE EXAMINATIONS - FEB-2022 MANUFACTURING ENGINEERING Third /Fifth Semester ROBOT DESIGN & PROGRAMMING

(Candidates admitted under 2017 Regulations-CBCS)

Time : Three Hours

Maximum Marks:100 Marks

Answer ALL questions Part-A (10 x 2 = 20 Marks)

- 1 What is meant by accuracy of robot?
- 2 What are the specifications of robots?
- 3 Write the uses of D-H representation.
- 4 Write the uses of homogeneous transformation matrix.
- 5 How to overcome discontinuities in trajectory planning?
- 6 Write the equation of third order polynomial trajectory planning.
- 7 What are the motion commands available in VAL programming?
- 8 What do you mean by topology of artificial neural networks?
- ⁹ Compare electrical, pneumatic and hydraulic actuators used in robot based on speed and load.
- 10 What are the basic classifications of sensors?

PART-B $(5 \times 16 = 80)$

11 a. With a neat sketch explain the degrees of freedom associated with the robot wrist.

OR

- Write the specifications of a spray-painting robot and explain the terms used in the specification.
- 12 a. Derive the general expression of the Jacobian Matrix Jv.

OR

b.

b.

Write the inverse kinematic equations of a RR configuration robot using DH transformation matrix.

13 a. Explain the joint velocities as applied to robot arm dynamics analysis.

OR

- b. Discuss the steps involved in trajectory planning with suitable examples.
- 14 a. Explain the important and salient features of expert system used in robotics.

OR

- b. With a block diagram explain the components of expert system.
- 15 a. (i) Describe the four types of photo electric sensors. (ii) Explain in detail the tactile and non-tactile sensors.

OR

b. With neat sketches explain any two methods of measuring forces in robot.